Вероятность Наступления События

⭐ ⭐ ⭐ ⭐ ⭐ Всем привет, если еще не знакомы с нашими материалами, то они отличаются сжатостью и только необходимой информацией, поэтому всегда можно быстро разобраться в любом вопросе. Сегодня раскроем такую тему как — Вероятность Наступления События. Скорее всего Вы думаете, что это сложно и непонятно, но мы расскажем это простым языком, так чтобы у Вас не осталось дополнительных вопросов. Но если у Вас все же есть недопонимание изложенного материала, то наш дежурный юрист проконсультирует Вас любым, удобным способом.

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А – попадание в мишень в первой попытке, В – во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения – не редкость в теории вероятностей.

Геометрия вероятности для наглядности

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Теперь у нас 4 варианта и 2 – выигрышные (таблица 2). Вероятность со второго раза попасть в квартиру друга – 1/2. Она уменьшилась из-за зависимости событий: мы уже исключили неблагоприятный исход и расчёт нужно производить заново. Если курьер настолько невезуч, что промахнется во второй раз, вероятность попасть по адресу в третий раз – 100%. Опытным путем мы проверили, что за двумя предыдущими дверьми балык никто не ждет.

Рекомендуем прочесть:  Как оплатить снос здания в казенном учреждении

Теория вероятности в обычной жизни: можно ли применить ее без погрешностей

Хороший пример принятия решений описан в книге Млодинова «(Не) совершенная случайность». Допустим, вы отправили рассказ в четыре издательства. От каждого получили отказ. На эмоциях вы придете к мысли: рассказ ужасный! Хотя, если изучить биографии популярных писателей, может оказаться, что дело не в вас. Отказы в публикации получали Стивен Кинг, Джоан Роулинг, Виктор Франкл. Такие истории случались вовсе не из-за отсутствия у них дара: просто в одном издательстве редактор не понял тонкую философию автора, в другом – спешил домой и проставил визу не читая.

Вероятность в независимых событиях

Теория вероятностей (тервер) – раздел математики, который изучает случайные события и их свойства. Ознакомиться с ней нужно, чтобы понимать, как принимать взвешенные решения. Ведь зная статистические данные и анализируя закономерности, можно «предсказать» исход события.

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой – нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?
  1. Если эксперимент проводится раз ( раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет – независимые.

Независимые события и правило умножения

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно — , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только .
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же . Сколько вариантов? Два. А сколько нас устраивает? Один.

Что если для такого подсчёта у вас слишком много игральных костей? Например, вы хотите знать, какова вероятность того, что выпадет сумма, равная 15 или больше, при броске 8d6. Для восьми игральных костей существует огромное множество разных результатов, и их подсчёт вручную займёт очень много времени — даже если мы найдем какое-нибудь хорошее решение, чтобы сгруппировать разные серии бросков игральных костей.

Основы игрового баланса: случайность и вероятность наступления разных событий

Что если у вас особенные игральные кости? Например, я видел игру с шестигранной игральной костью со специальными наклейками на гранях: 1, 1, 1, 2, 2, 3, поэтому она ведет себя как странная трехгранная игральная кость, с которой больше шансов, что выпадет число 1, чем 2, и скорее выпадет 2, чем 3. Какое среднее значение броска для этой кости? Итак, 1 + 1 + 1 + 2 + 2 + 3 = 10, делим на 6 — получается 5 / 3, или примерно 1,66. Таким образом, если у вас особенная игральная кость и игроки будут бросать три кости, а затем суммировать результаты — вы знаете, что сумма их броска будет равна примерно 5, и можете балансировать игру, основываясь на этом предположении.

Рекомендуем прочесть:  Что Пологается Матере От Государства , Если У Нее Один Ребенок ?

Моделирование методом Монте-Карло

Сумма значений всех граней для стандартного шестигранного кубика равна 1 + 2 + 3 + 4 + 5 + 6 = 21. Делим 21 на количество граней и получаем среднее значение броска: 21 / 6 = 3,5. Это особый случай, потому что мы предполагаем, что все исходы равновероятны.

Дисперсия случайной величины — мера разброса данной случайной величины, т. е. ее отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Содержание

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Пример 2. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается. Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему «дерева вероятностей». Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q1, q2, q1-1, q2-1).

Рекомендуем прочесть:  Калькулятор Страховки По Потребительскому Кредиту Втб

Независимость событий

Эта схема очень удобна для анализа последовательных случайных событий. Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Теорема умножения вероятностей для независимых событий

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных. Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.

Зависимые и независимые случайные события

Пример 3. Монета брошена два раза. Вероятность появления «герба» в первом испытании (событие ) не зависит от появления или не появления «герба» во втором испытании (событие ). В свою очередь, вероятность появления «герба» во втором испытании не зависит от результата первого испытания. Таким образом, события и независимые.

Зависимые и независимые события. Условная вероятность

Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие ), . Вероятность того, что из второго ящика взята стандартная деталь (событие ), . Вероятность того, что из третьего ящика взята стандартная деталь (событие ), . Так как события , и независимые в совокупности, то искомая вероятность (по теореме умножения)

Решение. Для решения данной задачи введем обозначения. Пусть — общее число машинок, — число бездефектных машинок, — число отобранных в партию машинок, — число бездефектных машинок в отобранной партии.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Дарья К.
Оцените автора
Правовая защита населения во всех юридических вопросах